CSE 390B: Graph Algorithms

Based on CSE 373 slides
by Jessica Miller, Ruth Anderson

A Graph: Course Prerequisites

Nodes = courses
Directed edge = prerequisite

Depth-First Search (DFS)

* depth-first search (DFS): find path between two vertices by
exploring each path as many steps as possible before backtracking
— often implemented recursively with a stack for the path in progress
— always finds a path, but not necessarily the shortest one
— easy to reconstruct the path once you have found it (just unroll the calls)

* DFS path search order from A to others (assumes ABC edge order):
— A
— A—B o
— A—>B—>D

e F O G

—~- A>B—F—oE

~A=C @) © ©

— A>C—oG

DFS pseudocode

dfs(vi, v2):
path = new Stack(). e
dfs(v1, v2, path)

dfs(vl, v2, path): e o

path.push(v1).

mark v1 as visited. 0 ° o

ifvl =v2:

path is found.

for each unvisited neighbor v, of vl with edge (vl —v)):
if dfs(v, v2, path) finds a path, path is found.

path.pop(). // path is not found.

Breadth-First Search (BFS)

* breadth-first search (DFS): find path between two nodes by taking
one step down all paths and then immediately backtracking
— often implemented with a queue of next vertices to visit
— always finds the shortest path (fewest edges); optimal for unweighted graphs
— harder to reconstruct the path once you have found it

* BFS path search order from A to others:
o (&)
— A—>B
— A—=>C e o
— A—>E

AN @ © @
— A—>B—>F

— A—>C—oG

BFS pseudocode
bfs(vi, v2): o

Q=1{vi}

mark v1 as visited. e o

while Q not empty:

v = Q.dequeue(). //remove from front ° ° e

ifvisv2:

path is found.

for each unvisited neighbor v, of vl with edge (vl —v):
mark v, as visited.
Q.enqueue(v). //add at end

path is not found.

NOoO o kWD -

Implementation: Adjacency Matrix

ann X n 2D array where M[a][b] = edges from v, to v,
— Sometimes implemented as a Map<V, Map<V, E>>
— Good for quickly asking, "is there an edge from vertex i to j?"
— How do we figure out the degree of a vertex?

1 2 3 4 5 6 7
0O(1]0]0]1]1]0
1170|1]0]0|0]|1
0(1]0|1]0]0|0
0(0|1|0]1]0]|1
1170/0]1]0|1]1
110/0]0|1]0]O0
O(1]0|1]1]0|0

Implementation: Adjacency Lists

* n lists of neighbors; L[a] = all edges out from v,
— Sometimes implemented as a Map<V, List<V>>
— Good for processing all-neighbors, sparse graphs (few edges)
— How do we figure out the degree of a vertex?

—T2] 75 76l |
111 3 7] |

T 12| T4l |

—{3] 751 7] |
Tl 174 76 771 |
11l 17151 |

T2 4] 5] |

N~No oA WN =
|

Dijkstra's algorithm

* Dijkstra's algorithm: finds shortest (min weight) path between a pair of
vertices in a weighted directed graph with nonnegative edges

— solves the "one vertex, shortest path" problem

— basic algorithm concept: create a table of information about the
currently known best way to reach each vertex (distance, previous
vertex) and improve it until it reaches the best solution

Dijkstra pseudocode

Dijkstra(v1, v2):
for each vertexv: //Initialize state
v's distance := infinity.
v's previous := none.
v1's distance := 0.
Q :={all vertices}.

while Q is not empty:
v :=remove Q's vertex with min distance.
mark v as known.
for each unknown neighbor n of v:
dist := v's distance + edge (v, n)'s weight.

if dist is smaller than n's distance: > >
n's distance := dist.
n's previous .= v. examine A: update B(2),D(1)

examine D: update C(3),E(3),F(9),G(5)
examine B,E: update none

examine C: update F(8)

examine G: update F(6)

examine F: update none

reconstruct path from v2 back to v1i,
following previous pointers.

Floyd-Warshall algorithm

* Floyd-Warshall algorithm: finds shortest (min weight) path between all
pairs of vertices in a weighted directed graph

— solves the "all pairs, shortest paths" problem (demo)
— idea: repeatedly find best path using only vertices 1..k inclusive

floydWarshall():

int path[n][n]. / = ::\
for each (i, j) from (0, 0) to (n, n): P ?/B\ 3— :
; 1

pathl[i][j] = edge_weight[i][j]. (1

fork=0ton:
fori=0ton:
forj=0ton:
pathli][j] = min(pathli][j],
path[i][k] + path[k][j]).

J

Topological Sort

* Topological sort: finds a total ordering of vertices such that
for any edge (v, w) in E, v precedes w in the ordering

— e.g. find an ordering in which all UW CSE courses can be taken

®®|©KEfD

Topological Sort pseudocode

V = {all vertices}.
E = {all edges}.
L=1] Ay
while V is not empty:
for each vertexvin V:
if v has no incoming edges:

V.remove(v).

L.append(v).

for each edge e (v — n):

E.remove(e).

examine A,D
return L examine B
examine C

examine E
examine F

