
CSE 390B: Graph Algorithms

Based on CSE 373 slides

by Jessica Miller, Ruth Anderson

1

2

A Graph: Course Prerequisites

321
143

142

322

326

341
370

378

401

421
Nodes = courses

Directed edge = prerequisite

373

410

413

415

417

461

Depth-First Search (DFS)

• depth-first search (DFS): find path between two vertices by

exploring each path as many steps as possible before backtracking

– often implemented recursively with a stack for the path in progress

– always finds a path, but not necessarily the shortest one

– easy to reconstruct the path once you have found it (just unroll the calls)

• DFS path search order from A to others (assumes ABC edge order):

– A

– A → B

– A → B → D

– A → B → F

– A → B → F → E

– A → C

– A → C → G 3

DFS pseudocode

dfs(v1, v2):

path = new Stack().

dfs(v1, v2, path)

dfs(v1, v2, path):

path.push(v1).

mark v1 as visited.

if v1 = v2:

path is found.

for each unvisited neighbor vi of v1 with edge (v1 → vi):

if dfs(vi, v2, path) finds a path, path is found.

path.pop(). // path is not found.

4

Breadth-First Search (BFS)

• breadth-first search (DFS): find path between two nodes by taking

one step down all paths and then immediately backtracking

– often implemented with a queue of next vertices to visit

– always finds the shortest path (fewest edges); optimal for unweighted graphs

– harder to reconstruct the path once you have found it

• BFS path search order from A to others:

– A

– A → B

– A → C

– A → E

– A → B → D

– A → B → F

– A → C → G
5

BFS pseudocode

bfs(v1, v2):

Q = {v1}.

mark v1 as visited.

while Q not empty:

v = Q.dequeue(). // remove from front

if v is v2:

path is found.

for each unvisited neighbor vi of v1 with edge (v1 → vi):

mark vi as visited.

Q.enqueue(vi). // add at end

path is not found.

6

Implementation: Adjacency Matrix

• an n × n 2D array where M[a][b] = edges from va to vb

– Sometimes implemented as a Map<V, Map<V, E>>

– Good for quickly asking, "is there an edge from vertex i to j?"

– How do we figure out the degree of a vertex?

1
2

3

4

5
6

7

0

1

0

0

1

1

0

1

2

3

4

5

6

7

1

0

1

0

0

0

1

0

1

0

1

0

0

0

0

0

1

0

1

0

1

1

0

0

1

0

1

1

1

0

0

0

1

0

0

0

1

0

1

1

0

0

1 2 3 4 5 6 7

7

Implementation: Adjacency Lists

• n lists of neighbors; L[a] = all edges out from va

– Sometimes implemented as a Map<V, List<V>>

– Good for processing all-neighbors, sparse graphs (few edges)

– How do we figure out the degree of a vertex?

1
2

3

4

5
6

7

1

2

3

4

5

6

7

2 5 6

1 3 7

2 4

3 5 7

1 4 6 7

1 5

2 4 5

Dijkstra's algorithm

• Dijkstra's algorithm: finds shortest (min weight) path between a pair of

vertices in a weighted directed graph with nonnegative edges

– solves the "one vertex, shortest path" problem

– basic algorithm concept: create a table of information about the

currently known best way to reach each vertex (distance, previous

vertex) and improve it until it reaches the best solution

9

A

GF

B

EC D

4 1

2

103

64

22

85

1

Dijkstra pseudocode

Dijkstra(v1, v2):
for each vertex v: // Initialize state

v's distance := infinity.
v's previous := none.

v1's distance := 0.
Q := {all vertices}.

while Q is not empty:
v := remove Q's vertex with min distance.
mark v as known.
for each unknown neighbor n of v:

dist := v's distance + edge (v, n)'s weight.

if dist is smaller than n's distance:
n's distance := dist.
n's previous := v.

reconstruct path from v2 back to v1,
following previous pointers.

10

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 ∞

∞ ∞

∞

∞ ∞

examine A: update B(2),D(1)
examine D: update C(3),E(3),F(9),G(5)
examine B,E: update none
examine C: update F(8)
examine G: update F(6)
examine F: update none

Floyd-Warshall algorithm

• Floyd-Warshall algorithm: finds shortest (min weight) path between all

pairs of vertices in a weighted directed graph

– solves the "all pairs, shortest paths" problem (demo)

– idea: repeatedly find best path using only vertices 1..k inclusive

floydWarshall():

int path[n][n].

for each (i, j) from (0, 0) to (n, n):

path[i][j] = edge_weight[i][j].

for k = 0 to n:

for i = 0 to n:

for j = 0 to n:

path[i][j] = min(path[i][j],

path[i][k] + path[k][j]).
11

Topological Sort

• Topological sort: finds a total ordering of vertices such that

for any edge (v, w) in E, v precedes w in the ordering

– e.g. find an ordering in which all UW CSE courses can be taken

12

A

B
C

D

E F
FA EDB C

Topological Sort pseudocode

V = {all vertices}.

E = {all edges}.

L = [].

while V is not empty:

for each vertex v in V:

if v has no incoming edges:

V.remove(v).

L.append(v).

for each edge e (v → n):

E.remove(e).

return L.

examine A,D
examine B
examine C
examine E
examine F

B
C

D

E

A

F

